RRG-based semantic frame parsing

Tatiana Bladier, Kilian Evang, Laura Kallmeyer

Heinrich Heine University Düsseldorf

TreeGraSP meeting #7 Düsseldorf, 16 February 2022

- * Goal: data-driven frame-semantic parsing for Role and Reference Grammar (RRG, Van Valin and LaPolla (1997); Van Valin Jr. (2005))
 - \rightarrow learn tree-frame pairs and argument linking
- ★ Semantic annotation of RRGparbank is still ongoing
 → Implementation of a prototypical semantic parser based on data from Parallel Meaning Bank (PMB, Abzianidze et al. (2017))

- Parse sentences in PMB with statistical TWG parser ParTAGe to obtain RRG structures
- Provide the second s
- S Extract a TWG grammar from parsed data and assign simplified supertags for each word in all sentences
- Create argument linking between the supertag and the role labels
- Learn supertags, dependencies, role labels, frames and argument linking with a statistical model

Resources: ParTAGe, VerbAtlas, PMB (1)

- ParTAGe (Waszczuk (2017); Bladier et al. (2020b))
 - \rightarrow Neural statistical parser for TWG, multilingual BERT model
 - \rightarrow Based on supertagging and a subsequent A* parsing step
 - \rightarrow The sentences in PMB are about 6.38 tokens long
 - \rightarrow ParTAGe performance on sentences < 7 tokens (avg. sent. length 6.69) from gold RRGparbank data is 93.52 (labeled F1) and 94.25 (unlabeled F1)

Resources: ParTAGe, VerbAtlas, PMB (2)

• VerbAtlas (Di Fabio et al. (2019))

 \rightarrow hand-crafted lexical-semantic resource mapping verbal synsets from BabelNet into semantically-coherent frames

 \rightarrow 499 frames, no distinction between core and non-core roles, distinction between syntactically realized, implicit, and shadow arguments

ightarrow We use frames to create frame lexicon

Resources: ParTAGe, VerbAtlas, PMB (3)

• Parallel Meaning Bank (PMB, Abzianidze et al. (2017))

 \rightarrow gold semantically annotated data for evaluation of the prototype

 \rightarrow PMB is a corpus of translations annotated with shared DRSs, over 11 million words, four languages (English, German, Italian, and Dutch)

- \rightarrow verbal predicates in PMB are annotated with WordNet senses
- \rightarrow frames in VerbAtlas are mapped to the WordNet senses

Learn tree-frame pairs (1)

• TWG extraction as described in Bladier et al. (2020a)

Figure 1: Extracted TWG supertags

Learn tree-frame pairs (2)

• Simplify supertags: all supertags have the tree height 3, only the root node is left and the substitution slots plus the lexical anchor

Figure 2: Simplified TWG supertags

Learn tree-frame pairs (3)

• Pair supertags with frames, after Kallmeyer and Osswald (2013)

Figure 3: Simplified TWG supertags mapped to frames

Some decision

Conclusions

Learn tree-frame pairs (4)

	Token	Head	Supertag	Frames	Argument Linking
1	He	2	(NP (PRO <>))	(entity)	(-)
2	needed	0	(CLAUSE (NP) (V <>) (NP))	(require	((1, 'Pivot'), (2, 'Theme'))
3 4	money	2 0	(NP (N <>)) (CLAUSE* (. <>))	(entity) (-)	(-) (-)

Table 1: Training data

Insights: Most common predicate supertags

- 175 distinct predicative stags, 7955 annotated frames in 7894 gold training sentences
- Most common predicative stags: •

Supertag	Percent
(CLAUSE (NP) (V <>) (NP))	38.82
(CLAUSE (NP) (V <>))	14.37
(CLAUSE (NP) (V <>) (PP))	10.62
(CLAUSE (NP) (V <>) (NP) (PP))	7.6
(CLAUSE (NP) (V <>) (P) (NP))	5.28
(CLAUSE (NP) (V <>) (NP) (NP))	2.8
(CLAUSE* (V <>) (NP))	1.6
(CLAUSE (NP) (V <>) (PRT) (NP))	1.3
(CLAUSE* (NP) (V <>) (NP))	1.3
(CLAUSE (NP) (V <>) (PRT))	1.12

Insights: Frame annotations

- 399 VerbAtlas frames in PMB
- 7955 predicates annotated with frames
- 18 frames are not seen in train data
- Most common frames:

Frame	Occ.	Example
STAY_DWELL	388	The famous conductor <u>lives</u> in New York
MATCH	339	My name <u>is</u> Robert Johnson
EXIST-WITH-FEATURE	255	This painting by Rembrandt is a masterpiece
LIKE	209	I <u>love</u> rock music
SPEAK	174	You <u>told</u> a lie
EAT BITE	165	Tom is chewing bubble gum
GO-FORWARD	125	I 'm travelling to Paris tomorrow
HIT	122	He hammered nails into the plank
BUY	118	I bought the book yesterday
LEAVE_DEPART_RUN-AWAY	113	The plane took off

Experiments on PMB data

- Train, development, test split: 6 331, 800, and 824 sentences (gold data, only frame-annotated)
- Average sentence length: 6.38
- 4 single task experiments
- NER model from simpletransformers, fine-tuning of BERT multilingual cased model

Experiment	Accuracy (dev)
Stag predictions	94.03
Dependency predictions	93.51
Frame predictions	83.5
Linking predictions	71.38

Frame predictions

- 848 predicted frames out of gold 895 frames in development set
- Most frequent mistake: auxiliary 'be' is confused with full verb 'be', false positive and false negative predictions of the 'exist-with-feature' frame
- Long tail of prediction errors

Gold frame	Predicted frame	Example
REMEMBER	HEAR_LISTEN	I don't remember your name
CONTINUE	OVERCOME_SURPASS	We survived!
LOWER	DECREASE	Tom lowered the bucket into the wall
CHASE	REQUIRE_NEED_WANT_HOPE	He wants the money
WASH_CLEAN	EMPTY_UNLOAD	She's cleaning the book

Models: linking predictions

- Accuracy: 71.38 (449/629) exact matches
- Partial accuracy: 98.4 (at least one linking is predicted correctly)
- Room for improvement: enforce coherence with predicted supertags and the frame

Gold linking	Predicted linking	Example
((1, 'Agent'), (2, 'Patient'))	((1, 'Agent'))	He is opening the window
((1, 'Experiencer'))	((1, 'Experiencer'), (2, 'Stimulus'))	Comfort him
((1, 'Agent'), (2, 'Theme'))	((1, 'Agent'), (2, 'Patient'))	I skipped breakfast
((1, 'Agent'), (0, 'Theme'))	((1, 'Agent'))	She joined us

Some decisions: predicate conjunction

Some decisions: perifery elements

Conclusions

Some decisions: subject and object control

Conclusions

- · Learning of tree-frame pairs seems to go well
- There is also some room for improvement which we will explore next

Conclusions

Future Work

- Seq2seq model for linking predictions
- Multitasking model to jointly predict all data
- Enforce coherence on linking predictions
- Experiments with RRGparbank data
- Multilingual experiments

References

References I

- Abzianidze, L., Bjerva, J., Evang, K., Haagsma, H., Van Noord, R., Ludmann, P., Nguyen, D.-D., and Bos, J. (2017). The parallel meaning bank: Towards a multilingual corpus of translations annotated with compositional meaning representations. arXiv preprint arXiv:1702.03964.
- Bladier, T., Kallmeyer, L., Osswald, R., and Waszczuk, J. (2020a). Automatic extraction of tree-wrapping grammars for multiple languages. In Proceedings of the 19th International Workshop on Treebanks and Linguistic Theories, pages 55–61, Düsseldorf, Germany. Association for Computational Linguistics.
- Bladier, T., Waszczuk, J., and Kallmeyer, L. (2020b). Statistical parsing of tree wrapping grammars. In Proceedings of the 28th International Conference on Computational Linguistics, pages 6759-6766, Barcelona, Spain (Online). International Committee on Computational Linguistics.
- Di Fabio, A., Conia, S., and Navigli, R. (2019). Verbatlas: a novel large-scale verbal semantic resource and its application to semantic role labeling. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 627-637.
- Kallmeyer, L. and Osswald, R. (2013). Syntax-driven semantic frame composition in lexicalized tree adjoining grammars. Journal of Language Modelling, 1(2):267–330.
- Van Valin, Jr., R. D. and LaPolla, R. (1997). Syntax: Structure, meaning and function. Cambridge University Press.
- Van Valin Jr., R. D. (2005). Exploring the Syntax-Semantics Interface. Cambridge University Press.
- Waszczuk, J. (2017). Leveraging MWEs in practical TAG parsing: towards the best of the two worlds. PhD thesis, Université François Rabelais Tours.