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Motivation

⋆ Goal: data-driven frame-semantic parsing for Role and Reference
Grammar (RRG, Van Valin and LaPolla (1997); Van Valin Jr.
(2005))
→ learn tree-frame pairs and argument linking

⋆ Semantic annotation of RRGparbank is still ongoing
→ Implementation of a prototypical semantic parser based on
data from Parallel Meaning Bank (PMB, Abzianidze et al. (2017))
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Approach

1 Parse sentences in PMB with statistical TWG parser ParTAGe to
obtain RRG structures

2 For each frame trigger (verbal predicate) and each role filler
assign a corresponding frame based on VerbAtlas

3 Extract a TWG grammar from parsed data and assign simplified
supertags for each word in all sentences

4 Create argument linking between the supertag and the role labels
5 Learn supertags, dependencies, role labels, frames and argument

linking with a statistical model
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Resources: ParTAGe, VerbAtlas, PMB (1)

• ParTAGe (Waszczuk (2017); Bladier et al. (2020b))
→ Neural statistical parser for TWG, multilingual BERT model
→ Based on supertagging and a subsequent A* parsing step
→ The sentences in PMB are about 6.38 tokens long
→ ParTAGe performance on sentences < 7 tokens (avg. sent.
length 6.69) from gold RRGparbank data is 93.52 (labeled F1)
and 94.25 (unlabeled F1)
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Resources: ParTAGe, VerbAtlas, PMB (2)

• VerbAtlas (Di Fabio et al. (2019))
→ hand-crafted lexical-semantic resource mapping verbal synsets
from BabelNet into semantically-coherent frames
→ 499 frames, no distinction between core and non-core roles,
distinction between syntactically realized, implicit, and shadow
arguments
→ We use frames to create frame lexicon
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Resources: ParTAGe, VerbAtlas, PMB (3)

• Parallel Meaning Bank (PMB, Abzianidze et al. (2017))
→ gold semantically annotated data for evaluation of the
prototype
→ PMB is a corpus of translations annotated with shared DRSs,
over 11 million words, four languages (English, German, Italian,
and Dutch)
→ verbal predicates in PMB are annotated with WordNet senses
→ frames in VerbAtlas are mapped to the WordNet senses
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Learn tree-frame pairs (1)
• TWG extraction as described in Bladier et al. (2020a)
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Figure 1: Extracted TWG supertags
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Learn tree-frame pairs (2)

• Simplify supertags: all supertags have the tree height 3, only the
root node is left and the substitution slots plus the lexical anchor
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Figure 2: Simplified TWG supertags
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Learn tree-frame pairs (3)

• Pair supertags with frames, after Kallmeyer and Osswald (2013)
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Figure 3: Simplified TWG supertags mapped to frames
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Learn tree-frame pairs (4)

Token Head Supertag Frames Argument Linking

1 He 2 (NP (PRO <>)) (entity) (–)
2 needed 0 (CLAUSE (NP ) (V <>) (NP )) (require_ ((1, ’Pivot’), (2, ’Theme’))

_need_
_want_
_hope)

3 money 2 (NP (N <>)) (entity) (–)
4 . 0 (CLAUSE* (. <>)) (–) (–)

Table 1: Training data
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Insights: Most common predicate supertags

• 175 distinct predicative stags, 7955 annotated frames in 7894 gold training sentences
• Most common predicative stags:

Supertag Percent

(CLAUSE (NP ) (V <>) (NP )) 38.82
(CLAUSE (NP ) (V <>)) 14.37
(CLAUSE (NP ) (V <>) (PP )) 10.62
(CLAUSE (NP ) (V <>) (NP ) (PP )) 7.6
(CLAUSE (NP ) (V <>) (P ) (NP )) 5.28
(CLAUSE (NP ) (V <>) (NP ) (NP )) 2.8
(CLAUSE* (V <>) (NP )) 1.6
(CLAUSE (NP ) (V <>) (PRT ) (NP )) 1.3
(CLAUSE* (NP ) (V <>) (NP )) 1.3
(CLAUSE (NP ) (V <>) (PRT )) 1.12
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Insights: Frame annotations

• 399 VerbAtlas frames in PMB
• 7955 predicates annotated with frames
• 18 frames are not seen in train data
• Most common frames:

Frame Occ. Example

STAY_DWELL 388 The famous conductor lives in New York
MATCH 339 My name is Robert Johnson
EXIST-WITH-FEATURE 255 This painting by Rembrandt is a masterpiece
LIKE 209 I love rock music
SPEAK 174 You told a lie
EAT_BITE 165 Tom is chewing bubble gum
GO-FORWARD 125 I ’m travelling to Paris tomorrow
HIT 122 He hammered nails into the plank
BUY 118 I bought the book yesterday
LEAVE_DEPART_RUN-AWAY 113 The plane took off
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Experiments on PMB data
• Train, development, test split: 6 331, 800, and 824 sentences

(gold data, only frame-annotated)
• Average sentence length: 6.38
• 4 single task experiments
• NER model from simpletransformers, fine-tuning of BERT

multilingual cased model

Experiment Accuracy (dev)

Stag predictions 94.03
Dependency predictions 93.51
Frame predictions 83.5
Linking predictions 71.38

Table 2
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Frame predictions

• 848 predicted frames out of gold 895 frames in development set
• Most frequent mistake: auxiliary ’be’ is confused with full verb

’be’, false positive and false negative predictions of the
’exist-with-feature’ frame

• Long tail of prediction errors

Gold frame Predicted frame Example

REMEMBER HEAR_LISTEN I don’t remember your name
CONTINUE OVERCOME_SURPASS We survived!
LOWER DECREASE Tom lowered the bucket into the wall
CHASE REQUIRE_NEED_WANT_HOPE He wants the money
WASH_CLEAN EMPTY_UNLOAD She’s cleaning the book
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Models: linking predictions

• Accuracy: 71.38 (449/629) exact matches
• Partial accuracy: 98.4 (at least one linking is predicted correctly)
• Room for improvement: enforce coherence with predicted

supertags and the frame

Gold linking Predicted linking Example

((1, ’Agent’), (2, ’Patient’)) ((1, ’Agent’)) He is opening the window
((1, ’Experiencer’)) ((1, ’Experiencer’), (2, ’Stimulus’)) Comfort him
((1, ’Agent’), (2, ’Theme’)) ((1, ’Agent’), (2, ’Patient’)) I skipped breakfast
((1, ’Agent’), (0, ’Theme’)) ((1, ’Agent’)) She joined us
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Some decisions: predicate conjunction
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Some decisions: perifery elements
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Some decisions: subject and object control
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Conclusions

• Learning of tree-frame pairs seems to go well
• There is also some room for improvement which we will explore

next
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Future Work

• Seq2seq model for linking predictions
• Multitasking model to jointly predict all data
• Enforce coherence on linking predictions
• Experiments with RRGparbank data
• Multilingual experiments
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