
Towards a formalization of
Role & Reference Grammar

Laura Kallmeyer & Rainer Osswald
Heinrich-Heine-Universität Düsseldorf

21. 02. 2018

Introduction

The architecture of Role & Reference Grammar (RRG)

Linking
algorithm

Syntactic representation

Semantic representation

Constructional
schemas

Syntactic
inventory

Lexicon

D
iscourse-pragm

atics

[do′(x,∅)] CAUSE [INGR shattered′(y)]

〈IF INT 〈TNS PRES 〈ASP PERF PROG 〈do′(Kim, [cry′(Kim)]〉〉〉〉

RP

PRED

NUCL

CORE
RP

PRED

NUCL RP PP

CORE

ADV

LDP

RP

PrCS

RP

V

PRED

NUCL

CORE

CLAUSE

SENTENCE

PP

PP

PERIPHERY

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

MORPHOLOGY —
SYNTAX Juncture: nuclear

Nexus: cosubordination
Construction:

RP

NUCL1

RP

NUCL2

NUCL

CORE

Linking: default
SEMANTICS [SEMNUCL1] CAUSE [SEMNUCL2]
PRAGMATICS unspecified

2 / 65

Introduction

Why is a formal perspective on RRG useful (and for whom)?

Is a formalization relevant for the working typologist?

Maybe not, but it can help to eliminate inconsistencies and
gaps of the theory.

Doesn’t RRG already come with a lot of formal elements?

Sure, but these elements are not defined with logical and
mathematical rigor.

Further advantages:

A formalization can serve as a basis (in fact, is a requirement)
for a computational treatment of RRG.

It allows us to study the generative power of RRG and the
complexity issues related to processing RRG-based grammars.

Moreover, the formalization should make it easier to extend and modify
the theory.

3 / 65

Introduction

General plan of the formalization

Take all explanatory components of RRG into account.

Develop a declarative, constraint-based formulation.

Some of the tasks

Syntactic representation
Formal specification of the syntactic inventory and of the
compositional operations on trees

Semantic representation
Clarification of the logical (and model-theoretic) aspects of RRG’s
logical structures

Linking algorithm
Non-procedural, inherently bidirectional description as a system of
constraints

4 / 65

Syntactic representation

The inventory of syntactic templates

CLAUSE

PrCS CORE

 CORE< PERIPHERY

NUCNP PP

PRED

PPV

Syntactic inventory

CLAUSELDP

SENTENCE

SENTENCE

LDP CLAUSE

 CORE< PERIPHERY PrCS

PRED

VADV NP
PP

NUCNP PP

(e.g. Yesterday, what did Robin show to Pat in the library?)

[Van Valin 2005, p. 15]

Issues
How are syntactic
templates defined?

How do they combine?

Proposal
Use concepts from
(Lexicalized) Tree
Adjoining Grammars
(LTAG)

Adapt the LTAG
formalism to the
syntactic dimension
of RRG

5 / 65

Background: LTAG

Lexicalized Tree Adjoining Grammars (LTAG)

Tree-rewriting system

Finite set of (lexicalized) elementary trees.

Two operations: substitution (replacing a leaf with a new tree)
and adjunction (replacing an internal node with a new tree).

NP

‘Adam’

S

VP

NPV

‘ate’

NP

NP

‘an apple’

VP

VP∗Adv

‘always’

↝
S

VP

VP

NP

‘an apple’

V

‘ate’

Adv

‘always’

NP

‘Adam’

6 / 65

Background: LTAG

Two key properties of the LTAG formalism

Extended domain of locality

The full argument projection of a lexical item can be represented
by a single elementary tree.

Elementary trees can have a complex constituent structure.

Factoring recursion from the domain of dependencies

Constructions related to iteration and recursion are modeled by
adjunction.

Through adjunction, the local dependencies encoded by elementary
trees can become long-distance dependencies in the derived trees.

Slogan: “Complicate locally, simplify globally” [Bangalore/Joshi 2010]

7 / 65

Background: LTAG

“Simplify globally”

The composition of elementary trees can be expressed by two general
operations: substitution and adjunction.

(Since basically all linguistic constraints are specified over the local
domains represented by elementary trees.)

“Complicate locally”

Elementary trees can have complex semantic representations
which are not necessarily derived compositionally (in the syntax)
from smaller parts of the trees.

In particular, there is no need to reproduce the internal structure
of an elementary syntactic tree within its associated semantic
representation. [Kallmeyer/Joshi 2003]

8 / 65

Background: LTAG

Tree families
Unanchored elementary trees are organized in tree families, which
capture variations in the (syntactic) subcategorization frames.

Example unanchored family for transitive verbs

S

NP VP

V◇ NP

S

NP S

NP VP

ε V◇ NP

S

NP VP

V◇ PP

P NP

by

S

NP S

NP VP

ε V◇ PP

P NP

by

S

NP S

NP VP

V◇ NP

ε

. . .

Metagrammar
Modular characterization of elementary trees by a system of
tree descriptions.

9 / 65

Background: LTAG

Decomposition/factorization in the metagrammar

Class CanSubj
S

NP ≺ VP

V◇

Class ExtrSubj
S

NP[wh=yes] ≺∗ S

NP ≺ VP

ε V◇

Class Subj
CanSubj ∨ ExtSubj

Class DirObj
VP

V◇ ≺∗ NP

Class ByObj

VP[voice=passive]
V◇ ≺∗ PP

P ≺ NP

by

Class ActV
VP[voice=active]

V◇
Class PassV
VP[voice=passive]

V◇

10 / 65

Background: LTAG

Decomposition/factorization in the metagrammar

metagrammar classes

compilation

unanchored tree families lexical entries

lexical selection

LTAG

Advantage
The metagrammar allows one to express and implement lexical
and constructional generalizations.

11 / 65

Syntactic representation

Syntactic templates in RRG

CORE

RP NUC

PRED

V

CORE PERIPHERY

ADV

SENTENCE

CLAUSE

CLAUSE

PrCS CORE

PrCS

RP

SENTENCE

CLAUSE

PrCS CORE PERIPHERY

NUC

RP RP PRED

V ADV

what did Kim smash yesterday

TNS CLAUSE

12 / 65

Syntactic representation

Modified representation

SENTENCE

CLAUSE

PrCS CORE PERIPHERY

NUC

RP RP PRED

V ADV

what did Kim smash yesterday

TNS CLAUSE

↝
SENTENCE

CLAUSE

PrCS CORE

TNS[OP+] NUC

RP RP PRED ADV[PERI+]

V

what did Kim smash yesterday

13 / 65

Syntactic representation

Application of the LTAG formalism to RRG

What are the elementary trees of RRG?

What are their modes of composition?

How can they be characterized as minimal models of
metagrammatical specifications?

Possible candidates for elementary trees in RRG

Basic predication templates and their variants, e.g.

CLAUSE

CORE

RP NUC RP

V[PRED+]

CLAUSE

CORE

RP NUC

AUX V[PRED+]

CLAUSE

CORE

RP NUC

AUX V[PRED+]

PP[PERI +]

P

by

RP

CLAUSE

PrCS CORE

RP RP NUC

V[PRED+]

Constructional schemas (strictly speaking, their syntactic dimension)

14 / 65

Syntactic representation

Metagrammar sketches

core-spine

CORE

NUC

V[PRED +]

core-clause

CLAUSE

CORE

precore-slot

CLAUSE

PrCS ≺ CORE

prenuc-rp

CORE

RP ≺ NUC

postnuc-rp

CORE

NUC ≺ RP

clause-spine :=
core-spine ∧ core-clause

CLAUSE

CORE

NUC

V[PRED +]

base-transitive :=
clause-spine ∧ prenuc-rp ∧ postnuc-rp

CLAUSE

CORE

RP ≺ NUC ≺ RP

V[PRED +]

15 / 65

Syntactic composition

Mode of composition I: (simple) substitution

SENTENCE

CLAUSE

CLAUSE

CORE

RP NUC RP

V[PRED+]

RP

Nprop

Kim
V[PRED+]

smashed

RP

DEF[OP+] CORER

NUCR

N

the glass

SENTENCE

CLAUSE

CLAUSE

CORE CLAUSE

RP NUC

V[PRED+]

John thinks

CLAUSE

CORE

RP NUC RP

V[PRED+]

Kim smashed the glass

16 / 65

Syntactic composition

Mode of composition II: (sister) adjunction

SENTENCE

CLAUSE

PrCS CORE

TNS[OP+] NUC

RP RP PRED ADV[PERI+]

V

what did Kim smash yesterday

SENTENCE

CLAUSE

PrCS CORE

NUC

RP RP V[PRED+]

what Kim smash

CLAUSE∗

TNS[OP+]

did

CORE∗

ADV[PERI+]

yesterday

17 / 65

Syntactic composition

Mode of composition II: (sister) adjunction
SENTENCE

CLAUSE

CORE

NUC

RP ADV[PERI+] PRED RP ADV[PERI+] ADV[PERI+]

V

Kim evidently smashed the glass deliberately yesterday

SENTENCE

CLAUSE

CORE

NUC

RP V[PRED+] RP

Kim smashed the glass

CLAUSE∗

ADV[PERI+]

evidently

CORE∗

ADV[PERI+]

deliberately

CORE∗

ADV[PERI+]

yesterday

Issue: Crossing branches (more about this later)
18 / 65

Syntactic composition

Wh-extraction

(1) What does John think Kim smashed?

Possible analyses of (1):

SENTENCE

CLAUSE

PrCS CLAUSE

RP CORE CLAUSE

RP NUC CORE

RP NUC

what does John think Kim smashed

SENTENCE

CLAUSE

PrCS CORE CLAUSE

RP RP NUC CORE

RP NUC

what does John think Kim smashed

19 / 65

Syntactic composition

Wh-extraction

(1) What does John think Kim smashed?

Possible analyses of (1):×SENTENCE

CLAUSE

PrCS CLAUSE

RP CORE CLAUSE

RP NUC CORE

RP NUC

what does John think Kim smashed

SENTENCE

CLAUSE

PrCS CORE CLAUSE

RP RP NUC CORE

RP NUC

what does John think Kim smashed

19 / 65

Syntactic composition

Wh-extraction

(2) What does John think Mary claimed Kim smashed?

Compositional derivation of (2):

SENTENCE

CLAUSE

CLAUSE

PrCS CORE CLAUSE

RP RP NUC

think
CLAUSE

CORE CLAUSE

RP NUC

claim
CLAUSE

CORE

RP NUC

smash

20 / 65

Syntactic composition

Wh-extraction

(2) What does John think Mary claimed Kim smashed?

Compositional derivation of (2):×SENTENCE

CLAUSE

CLAUSE

PrCS CORE CLAUSE

RP RP NUC

think
CLAUSE

CORE CLAUSE

RP NUC

claim
CLAUSE

CORE

RP NUC

smash

SENTENCE

CLAUSE

CLAUSE

CORE CLAUSE

RP NUC

think
CLAUSE

CORE CLAUSE

RP NUC

claim

CLAUSE

PrCS CLAUSE

RP CORE

RP NUC

smash

20 / 65

Syntactic composition

Mode of composition III: wrapping (substitution) (special versions)

γ

δ

X

β

Xα

X

X

γ

δ α

β

X

X

γ

β

X

X
α

X

X

γ

α

β

X

X

21 / 65

Syntactic composition

Control and matrix coding (≈ raising)

SENTENCE

CLAUSE

CORE CORE CORE

RP NUC RP CLM NUC RP CLM NUC RP

Mary expected John to ask Kim to clean the floor

SENTENCE

CLAUSE

CORE
CORE

CORE CORE

RP NUC RP CLM NUC CLM NUC RP

John told Kim to try to clean the floor

SENTENCE

CLAUSE

CORE
CORE

CORE CORE

RP NUC CLM NUC RP CLM NUC RP

John tried to persuade Kim to clean the floor

22 / 65

Syntactic composition

Control and matrix coding (≈ raising)

SENTENCE

CLAUSE

CORE CORE CORE

RP NUC RP CLM NUC RP CLM NUC RP

Mary expected John to ask Kim to clean the floor

CLAUSE

CORE CORE

RP NUC RP

expected

CLAUSE

CORE CORE

NUC RP

(to) ask

CLAUSE

CORE

NUC RP

(to) clean

CLAUSE

CORE CORE CORE

RP NUC RP NUC RP NUC RP

23 / 65

Syntactic composition

Control and matrix coding (≈ raising)

SENTENCE

CLAUSE

CORE
CORE

CORE CORE

RP NUC CLM NUC RP CLM NUC RP

John tried to persuade Kim to clean the floor

CLAUSE

CORE

CORE CORE

RP NUC

tried

CLAUSE

CORE CORE

NUC RP

(to) persuade

CLAUSE

CORE CORE

CORE CORE

RP NUC RP NUC RP

24 / 65

Syntactic composition

Control, matrix coding & wh-extraction

(3) Whom did Mary expect John to ask to clean the floor?

CLAUSE

CORE CORE

RP NUC RP

expected

CLAUSE

PrCS CORE CORE

RP NUC

(to) ask

CLAUSE

CORE

NUC RP

(to) clean

CLAUSE

PrCS CORE CORE CORE

RP RP NUC RP NUC NUC RP

25 / 65

Syntactic composition

Modes of composition (↝ Tree Wrapping Grammar; TWG)

I. Simple substitution

α
X

β

X

α

β

X

II. Sister adjunction

α

βL βR

X

γ

X∗
α

βL βRγ

X

III. Wrapping substitution

γ

δL δR

Y

β

X
α

Y

X

 α

γ

δL δR

Y

β

X

26 / 65

Formal properties of TWGs

For every k-TWG (a constrained form of TWG), a simple Context-Free
Tree Grammar (CFTG) of rank k can be constructed (Kallmeyer,
2016)

This, in turn, is equivalent to a well-nested Linear Context-Free
Rewriting System (LCFRS) of fan-out k + 1.

Consequently, k-TWGs are in particular mildly context-sensitive.

Idea of k-TWG: limit the number of times a d-edge can stretch across a
specific node to k (except for nested wrappings).

X

A B

X

b A

a

X

c B

c

↝
k = 2 X

c b A B

b c

27 / 65

Formal properties of TWGs

A k > 1 allows extraction out of several arguments

(4) Bücher
books

hat
has

derjenige
that

Student
student

drei
three

gekau�
bought

der
who

am meisten
the most

Geld
money

ha�e
had
‘the student with the most money bought three books’

(from Chen-Main & Joshi, 2012)

CLAUSE

PrCS

Bücher

CORE

RP

drei

CORE

Aux RP RP NUC

hat gekau�

CLAUSE

RP

derj. Stud.

CLAUSE

der . . .

28 / 65

Formal properties of TWGs

A k > 1 allows extraction out of several arguments

(4) Bücher
books

hat
has

derjenige
that

Student
student

drei
three

gekau�
bought

der
who

am meisten
the most

Geld
money

ha�e
had
‘the student with the most money bought three books’

(from Chen-Main & Joshi, 2012)

CLAUSE

PrCS

Bücher

CORE

RP

drei

CORE

Aux RP RP NUC

hat gekau�

CLAUSE

RP

derj. Stud.

CLAUSE

der . . .

28 / 65

Syntax-semantics interface

Example
(5) Adam ate an apple.

RP[I=u]

‘Adam’
u
⎡⎢⎢⎢⎢⎣
person
name ‘Adam’

⎤⎥⎥⎥⎥⎦

CLAUSE

CORE[I=e]

RP[I=y]NUC

V

‘ate’

RP[I=x]

e

⎡⎢⎢⎢⎢⎢⎢⎣
eating
actor x
theme y

⎤⎥⎥⎥⎥⎥⎥⎦

RP[I=v]

‘an apple’
v[apple]

x ≜u y ≜ v

CLAUSE

CORE[I=e]

RP[I=y]

‘an apple’

NUC

V

‘ate’

RP[I=x]

‘Adam’

e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eating

actor x
⎡⎢⎢⎢⎢⎣
person

name ‘Adam’

⎤⎥⎥⎥⎥⎦
theme y [apple]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
eeating

x
person

‘Adam’

y apple

actor

name

theme

29 / 65

Syntax-semantics interface

Example
(5) Adam ate an apple.

RP[I=u]

‘Adam’
u
⎡⎢⎢⎢⎢⎣
person
name ‘Adam’

⎤⎥⎥⎥⎥⎦

CLAUSE

CORE[I=e]

RP[I=y]NUC

V

‘ate’

RP[I=x]

e

⎡⎢⎢⎢⎢⎢⎢⎣
eating
actor x
theme y

⎤⎥⎥⎥⎥⎥⎥⎦

RP[I=v]

‘an apple’
v[apple]

x ≜u y ≜ v

CLAUSE

CORE[I=e]

RP[I=y]

‘an apple’

NUC

V

‘ate’

RP[I=x]

‘Adam’

e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eating

actor x
⎡⎢⎢⎢⎢⎣
person

name ‘Adam’

⎤⎥⎥⎥⎥⎦
theme y [apple]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
eeating

x
person

‘Adam’

y apple

actor

name

theme

29 / 65

Syntax-semantics interface

Example
(5) Adam ate an apple.

RP[I=u]

‘Adam’
u
⎡⎢⎢⎢⎢⎣
person
name ‘Adam’

⎤⎥⎥⎥⎥⎦

CLAUSE

CORE[I=e]

RP[I=y]NUC

V

‘ate’

RP[I=x]

e

⎡⎢⎢⎢⎢⎢⎢⎣
eating
actor x
theme y

⎤⎥⎥⎥⎥⎥⎥⎦

RP[I=v]

‘an apple’
v[apple]

x ≜u y ≜ v

CLAUSE

CORE[I=e]

RP[I=y]

‘an apple’

NUC

V

‘ate’

RP[I=x]

‘Adam’

e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eating

actor x
⎡⎢⎢⎢⎢⎣
person

name ‘Adam’

⎤⎥⎥⎥⎥⎦
theme y [apple]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
eeating

x
person

‘Adam’

y apple

actor

name

theme

29 / 65

Syntax-semantics interface

Example
(5) Adam ate an apple.

RP[I=u]

‘Adam’
u
⎡⎢⎢⎢⎢⎣
person
name ‘Adam’

⎤⎥⎥⎥⎥⎦

CLAUSE

CORE[I=e]

RP[I=y]NUC

V

‘ate’

RP[I=x]

e

⎡⎢⎢⎢⎢⎢⎢⎣
eating
actor x
theme y

⎤⎥⎥⎥⎥⎥⎥⎦

RP[I=v]

‘an apple’
v[apple]

x ≜u y ≜ v

CLAUSE

CORE[I=e]

RP[I=y]

‘an apple’

NUC

V

‘ate’

RP[I=x]

‘Adam’

e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eating

actor x
⎡⎢⎢⎢⎢⎣
person

name ‘Adam’

⎤⎥⎥⎥⎥⎦
theme y [apple]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
eeating

x
person

‘Adam’

y apple

actor

name

theme

29 / 65

Syntax-semantics interface

Summary of the LTAG + frame semantics perspective on RRG:

Elementary construction
= elementary tree (full argument projection) + semantic frame

+ linking of frame node variables to interface features in the tree

“Complicate locally, simplify globally”

1. A small set of (global) operations for syntactic composition

2. Many linguistic regularities and generalizations are encoded in
elementary constructions → decomposition in the metagrammar

Special tree operations because of flat syntactic structures:

(Wrapping) substitution and sister adjunction.

Argument linking rules as constraints in the metagrammar.

30 / 65

Syntax-semantics interface

“Raising to object” (e.g. NP expect / believe / require NP to-INF)

CLAUSE[I=e]

CORE[I=e] CORE[
I=e ′

ε = y

]

RP[I=x] NUC[I=e] RP[I=y]

V[
I=e
PRED +

]

e

de-re-attitude
COGNIZER x
TOPIC y

CONTENT e ′
[
situation

]

participant-of (y, e ′)

Note Passive is possible in both cores:

(6) Mary expects the grant proposal to be completed within the next week.

The grant proposal is expected to be completed within the next week.

31 / 65

Operator projection

NUC

 PRED

NUC

 CORE

V

 CLAUSE

SENTENCE

CLAUSE

 CORE

SENTENCE

Aspect
Negation
Directionals

Directionals
Event quant
Modality
Negation

Status
Tense
Evidentials
Illocutionary
 Force

SENTENCE

CLAUSE

 CORE

NUC

PRED

V

Will they have to be leaving?

V

ASP NUC

TNS CLAUSE

 IF CLAUSE

SENTENCE

NP

MOD CORE

[Van Valin 2005: 12/14]

32 / 65

Adding features

In TAG (mostly binary tree structures), we have top and bo�om feature
stuctures that can constrain adjunction.

S

a S[c +][c −]

b

S[c +]

S∗[c 1]c ↝
S

a S[c +][c +]
S[c 1]
[c −]c

b

33 / 65

Adding features

In our flat structures with sister adjunction, we use le� and right edge
features to capture adjunction constraints.

[c +] [c −]

S

a b

[c +] [c 1]

S∗

c

↝ [c +] [c +] [c 1] [c −]

S

a c b

34 / 65

Adding features

Finite set of untyped feature structures with structure sharing
within elementary trees (just like TAG, Vijay-Shanker & Joshi, 1988).

Nodes have a single feature structure while edges have a le� one
and a right one.

In a sister adjunction, the feature structure of the root of the adjoined
tree unifies with the one of the target node.

In the final derived tree, the two feature structures between two
neighbouring edges have to unify.

Furthermore, features on the le�most (resp. rightmost) edge percolate
upwards, except if there is a substitution node, which blocks feature
percolation.

35 / 65

Integrating operators

Each operator belongs to a certain level of RRG’s layered structure:

Layer Nucleus Core Clause
Operators Aspect Directionals Status

Negation Event quantification Tense
Directionals Modality Evidentials

Negation Illocutionary Force

The operator level explains

the scope behavior: structurally higher operators take scope over
lower ones

surface order constraints: higher operators are further away from
the nucleus of the structure.

36 / 65

Integrating operators

Problem: constituent and operator structure are not completely parallel.
An operator belonging to a specific layer can be surrounded by elements
belonging to a lower layer in the constituent structure.

CL

CO

RP

John

NUC

V

V

NUC

CO

CL

sleeping

TNS

has

ASP

been

↝

CL

CO

RP

John

NUC

V

sleepinghas been

37 / 65

Integrating operators

Problem: constituent and operator structure are not completely parallel.
An operator belonging to a specific layer can be surrounded by elements
belonging to a lower layer in the constituent structure.

CL

CO

RP

John

NUC

V

V

NUC

CO

CL

sleeping

TNS

has

ASP

been

↝

CL

CO

RP

John

NUC

V

sleepinghas been

37 / 65

Integrating operators

The following holds:

The hierarchical order of constituent and operator structure is the
same.
The existence of a layer in the operator projection requires that this
layer also exists in the constituent structure.

We model the operator projection within the features while a�aching the
operators at their surface position.

CL[tns pres]

CO

RP

John

NUC[asp perf]

V

sleeping

OP[cl [tns pres]]

has OP[nuc [asp perf]]

been
38 / 65

Integrating operators

Features for operators (syntactic category OP):

edge features tns etc. that express the presence/absence of a specific
operator and that can be used to formulate obligatory adjunction
constraints.

edge feature ops (= operator structure), its value being a feature
structure with features cl, co and nuc with possible values + or −.
ops guarantees that nuclear, core and clausal operators have to
appear in this order when moving outwards from the nuclear predicate.

node features that specify the contribution of the operator, for
instance [nuc [asp perf], cl [tns past]] for the operator had in “John
had slept”.

39 / 65

Integrating operators

[
tns 2

ops 4
] [

tns 2

ops 4
] [tns −]

CL[tns 1]

[tns +]

CO[tns 1]

RP NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −
co −
nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

sleeping
[
tns +
ops[cl +]

] [tns −]

CO[tns pres]∗

OP[cl [tns pres]]

has

[ops[nuc +]] [ops [
cl −
co −

]]

NUC[asp perf]∗

OP[nuc [asp perf]]

been
40 / 65

Integrating operators

[
tns 2

ops 4
] [

tns 2

ops 4
] [tns −]

CL[tns pres]

[tns +]

CO[tns pres]

RP

John

NUC[asp perf]

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −
co −
nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

sleeping

[
tns +
ops[cl +]

] [tns −]

OP[cl [tns pres]]

has [ops[nuc +]] [ops [
cl −
co −

]]

OP[nuc [asp perf]]

been

41 / 65

An extended example

(7) Fortuna Van claimed will probably win the match.

Syntax: CL

RP

PrCS

RP

RP

Fortuna Van

NUC

V

claim-ed will probably win

V

NUC

CO

CLCO

the match

ADV

NUC

CO

CL

NUC

CO

CLTNS TNS

periphery

42 / 65

An extended example

(7) Fortuna Van claimed will probably win the match.

Syntax: CL

RP

PrCS

RP

RP

Fortuna Van

NUC

V

claim-ed will probably win

V

NUC

CO

CLCO

the match

ADV

NUC

CO

CL

NUC

CO

CLTNS TNS

periphery

42 / 65

An extended example

(7) Fortuna Van claimed will probably win the match.

Semantics:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement

actor 1

⎡⎢⎢⎢⎢⎣
person

name ‘Van´

⎤⎥⎥⎥⎥⎦
speaker 1

message

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

prediction

about

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

winning

actor
⎡⎢⎢⎢⎢⎣
team

name ‘Fortuna’

⎤⎥⎥⎥⎥⎦
theme [match]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
probability [high]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
43 / 65

An extended example

Argument insertion by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’
RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a
well-formed complete syntactic tree.

44 / 65

An extended example

Argument insertion by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’
RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a
well-formed complete syntactic tree.

44 / 65

An extended example

Argument insertion by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’
RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a
well-formed complete syntactic tree.

44 / 65

An extended example

Argument insertion by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’
RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a
well-formed complete syntactic tree.

44 / 65

An extended example

Argument insertion by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’
RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a
well-formed complete syntactic tree.

44 / 65

An extended example

Argument insertion by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’
RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a
well-formed complete syntactic tree.

44 / 65

An extended example

Argument insertion by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’
RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a
well-formed complete syntactic tree.

44 / 65

An extended example

Operators and modifiers are added by sister adjunction.
CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

CO

ADV

‘probably’

CO

OP

‘will’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

ADV

‘probably’

OP

‘will’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

(The operator projection as well as modifier scope is modeled in the
features.)

45 / 65

An extended example

Operators and modifiers are added by sister adjunction.

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

CO

ADV

‘probably’

CO

OP

‘will’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

ADV

‘probably’

OP

‘will’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

(The operator projection as well as modifier scope is modeled in the
features.)

45 / 65

An extended example

Operators and modifiers are added by sister adjunction.

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

CO

ADV

‘probably’

CO

OP

‘will’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

ADV

‘probably’

OP

‘will’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

(The operator projection as well as modifier scope is modeled in the
features.)

45 / 65

An extended example

Features

Features on nodes take care of agreement, case assignment, tense
etc.

Features between edges express constraints on possible adjunctions
in between.

46 / 65

An extended example

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

CO

RP[case = acc]NUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL
[tns = +]

CO
[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −
co −
nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO

[
tns +
ops[cl +]

] [tns −]

OP

‘will’

CL

PrCS

RP[case = nom]

CL[tns = 1]

[tns = +]

CO[op = [cl = [tns = 1]]]

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −
co −
nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO[op = 2]

[
tns +
ops[cl +]

] [tns −]

OP 2 [cl = [tns = fut]]

‘will’

case on nodes for case assignment
tns on edges for obligatory adjunction of a single tns operator
ops on edges to keep track of the the correspondence between

surface order and operator hierarchy
op on nodes that lists the operators of the entire layered structure
tns etc. on the corresponding layer nodes
cl, co,nuc on OP nodes that characterize the operator’s contribution

47 / 65

An extended example

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

CO

RP[case = acc]NUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL
[tns = +]

CO
[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −
co −
nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO

[
tns +
ops[cl +]

] [tns −]

OP

‘will’

CL

PrCS

RP[case = nom]

CL[tns = 1]

[tns = +]

CO[op = [cl = [tns = 1]]]

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −
co −
nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO[op = 2]

[
tns +
ops[cl +]

] [tns −]

OP 2 [cl = [tns = fut]]

‘will’

case on nodes for case assignment

tns on edges for obligatory adjunction of a single tns operator
ops on edges to keep track of the the correspondence between

surface order and operator hierarchy
op on nodes that lists the operators of the entire layered structure
tns etc. on the corresponding layer nodes
cl, co,nuc on OP nodes that characterize the operator’s contribution

47 / 65

An extended example

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

CO

RP[case = acc]NUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL
[tns = +]

CO
[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −
co −
nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO

[
tns +
ops[cl +]

] [tns −]

OP

‘will’

CL

PrCS

RP[case = nom]

CL[tns = 1]

[tns = +]

CO[op = [cl = [tns = 1]]]

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −
co −
nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO[op = 2]

[
tns +
ops[cl +]

] [tns −]

OP 2 [cl = [tns = fut]]

‘will’

case on nodes for case assignment

tns on edges for obligatory adjunction of a single tns operator
ops on edges to keep track of the the correspondence between

surface order and operator hierarchy

op on nodes that lists the operators of the entire layered structure
tns etc. on the corresponding layer nodes
cl, co,nuc on OP nodes that characterize the operator’s contribution

47 / 65

An extended example

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

CO

RP[case = acc]NUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL
[tns = +]

CO
[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −
co −
nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO

[
tns +
ops[cl +]

] [tns −]

OP

‘will’

CL

PrCS

RP[case = nom]

CL[tns = 1]

[tns = +]

CO[op = [cl = [tns = 1]]]

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −
co −
nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO[op = 2]

[
tns +
ops[cl +]

] [tns −]

OP 2 [cl = [tns = fut]]

‘will’

case on nodes for case assignment
tns on edges for obligatory adjunction of a single tns operator
ops on edges to keep track of the the correspondence between

surface order and operator hierarchy

op on nodes that lists the operators of the entire layered structure
tns etc. on the corresponding layer nodes
cl, co,nuc on OP nodes that characterize the operator’s contribution

47 / 65

An extended example

Interfacing syntax and semantics

Interface features link frame nodes to syntactic nodes.

Their unification during syntactic composition triggers semantic
frame unification.

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement
actor x
speaker x

message v
⎡⎢⎢⎢⎢⎣
prediction

about e2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
48 / 65

An extended example

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement
actor x
speaker x

message v
⎡⎢⎢⎢⎢⎣
prediction

about e2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

RP[i = u]

‘Van’

u
⎡⎢⎢⎢⎢⎣
person
name ‘Van

⎤⎥⎥⎥⎥⎦

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement

actor x
⎡⎢⎢⎢⎢⎣
person

name ‘Van

⎤⎥⎥⎥⎥⎦
speaker x

message v
⎡⎢⎢⎢⎢⎣
prediction

about e2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CL

PrCS

RP[i = y]

CL[e = e3, i = w]

CO[e = e3, i = w]

RP[i = z]NUC

V

‘win’

e3

⎡⎢⎢⎢⎢⎢⎢⎣
winning
actor y
theme z

⎤⎥⎥⎥⎥⎥⎥⎦

49 / 65

An extended example

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement
actor x
speaker x

message v
⎡⎢⎢⎢⎢⎣
prediction

about e2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
RP[i = u]

‘Van’

u
⎡⎢⎢⎢⎢⎣
person
name ‘Van

⎤⎥⎥⎥⎥⎦

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement

actor x
⎡⎢⎢⎢⎢⎣
person

name ‘Van

⎤⎥⎥⎥⎥⎦
speaker x

message v
⎡⎢⎢⎢⎢⎣
prediction

about e2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CL

PrCS

RP[i = y]

CL[e = e3, i = w]

CO[e = e3, i = w]

RP[i = z]NUC

V

‘win’

e3

⎡⎢⎢⎢⎢⎢⎢⎣
winning
actor y
theme z

⎤⎥⎥⎥⎥⎥⎥⎦

49 / 65

An extended example

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement
actor x
speaker x

message v
⎡⎢⎢⎢⎢⎣
prediction

about e2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
RP[i = u]

‘Van’

u
⎡⎢⎢⎢⎢⎣
person
name ‘Van

⎤⎥⎥⎥⎥⎦

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement

actor x
⎡⎢⎢⎢⎢⎣
person

name ‘Van

⎤⎥⎥⎥⎥⎦
speaker x

message v
⎡⎢⎢⎢⎢⎣
prediction

about e2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CL

PrCS

RP[i = y]

CL[e = e3, i = w]

CO[e = e3, i = w]

RP[i = z]NUC

V

‘win’

e3

⎡⎢⎢⎢⎢⎢⎢⎣
winning
actor y
theme z

⎤⎥⎥⎥⎥⎥⎥⎦

49 / 65

An extended example

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement
actor x
speaker x

message v
⎡⎢⎢⎢⎢⎣
prediction

about e2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
RP[i = u]

‘Van’

u
⎡⎢⎢⎢⎢⎣
person
name ‘Van

⎤⎥⎥⎥⎥⎦

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement

actor x
⎡⎢⎢⎢⎢⎣
person

name ‘Van

⎤⎥⎥⎥⎥⎦
speaker x

message v
⎡⎢⎢⎢⎢⎣
prediction

about e2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CL

PrCS

RP[i = y]

CL[e = e3, i = w]

CO[e = e3, i = w]

RP[i = z]NUC

V

‘win’

e3

⎡⎢⎢⎢⎢⎢⎢⎣
winning
actor y
theme z

⎤⎥⎥⎥⎥⎥⎥⎦

49 / 65

An extended example

CL

CL[e = e2, i = v]

CO[e = e2, i = v]

RP[i = z]NUC

V

‘win’

CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

PrCS

RP[i = y]

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement

actor x
⎡⎢⎢⎢⎢⎣
person

name ‘Van

⎤⎥⎥⎥⎥⎦
speaker x

message v

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

prediction

about e2

⎡⎢⎢⎢⎢⎢⎢⎣
winning

actor y
theme z

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CO[i = r]

Adv

‘probably’
r[probability [high]]

50 / 65

An extended example

CL

CL[e = e2, i = v]

CO[e = e2, i = v]

RP[i = z]NUC

V

‘win’

CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

PrCS

RP[i = y]

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement

actor x
⎡⎢⎢⎢⎢⎣
person

name ‘Van

⎤⎥⎥⎥⎥⎦
speaker x

message v

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

prediction

about e2

⎡⎢⎢⎢⎢⎢⎢⎣
winning

actor y
theme z

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
CO[i = r]

Adv

‘probably’
r[probability [high]]

50 / 65

An extended example

CL

CL[e = e2, i = v]

CO[e = e2, i = v]

RP[i = z]NUC

V

‘win’

Adv

‘probably’

CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

PrCS

RP[i = y]

e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

statement

actor x
⎡⎢⎢⎢⎢⎣
person

name ‘Van’

⎤⎥⎥⎥⎥⎦
speaker x

message v

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

prediction

about e2

⎡⎢⎢⎢⎢⎢⎢⎣
winning

actor y
theme z

⎤⎥⎥⎥⎥⎥⎥⎦
probability [high]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
51 / 65

Operators in complex sentences

Cosubordination structures in RRG

have basically the form [[]X []X]X.

have the characteristic property that X-operators are realized only
once but have scope over both constituents.

Examples from Van Valin (2005):

(8) [[Gid-ip]CO
go-lm1

[gör-meli-yiz]CO]CO
see-mod-1pl

(Turkish)

‘We ought to go and see.’

(9) [[Kim mustMOD go]CO [to try]CO [to wash the car]CO]CO

We assume that it is a general property of cosubordination elementary
trees that operator features get passed upwards to the higher X.

1LM = linkage marker
52 / 65

Operators in complex sentences

[[Gid-ip]CO [gör-meli-yiz]CO]CO

Proposal for the elementary trees:

Special cosubordination tree for gör PRO that provides a lower and a
higher CO node.

CO operator features (e.g., mod) are shared between the two CO
nodes and thereby passed upwards from the lower node.

gid-ip is added by adjunction, targeting the higher CO node, thereby
adding a second CO daughter.

Edge feature cos (values +/-) that indicates that adjunction of at
least one more core to the le� is obligatory.

Node feature cos (values +/-) that indicate whether a node is the
root of a cosubordination structure.

53 / 65

Operators in complex sentences

Cosubordination structure

CL

[cos +]

CO[mod 1 ,cos +]

[cos −]

CO[mod 1]
NUC PRO

V

gör yiz

CO[cos +]

[cos +]

CO
NUC LM

V

gid ip

CO[mod deont]

OP[co [mod deont]]

meli

54 / 65

Operators in complex sentences

Cosubordination structure

CL
[cos +]

CO[mod deont,cos +]
[cos +]

CO

[cos −]

CO[mod deont]

NUC LM NUC OP[co [mod deont]] PRO

V V

gid ip gör meli yiz

55 / 65

Operators in complex sentences

In subordination structures, operator projections are built locally. The
composition operation is substitution, which means that edge feature
percolation is blocked.

(10) [[Kim told Pat]CO [that [she will arrive late]CO]CL]CL

The two CL nodes in this structure have di�erent tns values, provided by
told and will respectively.

56 / 65

Operators in complex sentences

Subordination structure

CL[tns past]
[tns +]

CO CL

RP

[tns +]

NUC

V

RP

toldKim Pat

CL[tns 1]

LM
[tns +]

CO[tns 1]

RP
[tns 2] [tns 2]

CO[tns fut]
[tns +] [tns −]

OP

[tns −]

NUC

V

ADV

that she

will

arrive late

57 / 65

More on cosubordination structures

(11) Yu-slóhaŋ
by.pulling-slide

a-wíčha-∅-ye.
am-3pl.ug.anim-3sg.ac-go

(Lakhota)

‘She was dragging them away.’

ac – Actor
am – Accompanied motion
anim – Animate
ug – Undergoer

$-"64&
[* = F]

$03&
[* = F]

$03&
[* = F�]

$03&
[* = F�]

/6$
[* = F�]

130
[* = Z]

130
[* = Y]

/6$
[* = F�]

7
[* = F�]

7
[* = F�]

\X�VOµKD D�XÍIB�»�\H

F� VXEDFWLYLW\�RI F

F�

H[WHQGHG�FDXVDWLRQ

130(

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

$"64&

SXOOLQJ�RQ

&''&$503 Y

1"5*&/5 Z

&''&$5

WUDQVORFDWLRQ

.07&3 Z

."//&3 VOLGLQJ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

F� VXEDFWLYLW\�RI F

F�

DFFRPSDQLHG�PRWLRQ

130(

∥∥∥∥∥∥∥∥∥∥∥∥

WUDQVORFDWLRQ ∧ VWD\�ZLWK
.07&3 Y

1"5)

[
%*3 DZD\

]

&''&$503 Y

5)&.& Z

∥∥∥∥∥∥∥∥∥∥∥∥

58 / 65

More on cosubordination structures

�estion: Are core cosubordination constructions

1. elementary constructions (≈ syntactic templates / constructional schemas)
or are they

2. compositional structures derived by the modes of syntactic (and
semantic) composition?

Key argument for Option 2: iteration

Possible ways of composition:

wrapping CORE

CORE CORE

NUC

CORE

CORE CORE

NUC

CLAUSE

CORE

CORE

NUC

CLAUSE

CORE

CORE CORE CORE

NUC NUC NUC

sister adjunction CORE*

CORE

NUC

CORE*

CORE

NUC

CLAUSE

CORE

CORE

NUC

CLAUSE

CORE

CORE CORE CORE

NUC NUC NUC

59 / 65

More on cosubordination structures

�estion: Are core cosubordination constructions

1. elementary constructions (≈ syntactic templates / constructional schemas)
or are they

2. compositional structures derived by the modes of syntactic (and
semantic) composition?

Key argument for Option 2: iteration

Possible ways of composition:

wrapping CORE

CORE CORE

NUC

CORE

CORE CORE

NUC

CLAUSE

CORE

CORE

NUC

CLAUSE

CORE

CORE CORE CORE

NUC NUC NUC

sister adjunction CORE*

CORE

NUC

CORE*

CORE

NUC

CLAUSE

CORE

CORE

NUC

CLAUSE

CORE

CORE CORE CORE

NUC NUC NUC

59 / 65

More on cosubordination structures

�estion: Are core cosubordination constructions

1. elementary constructions (≈ syntactic templates / constructional schemas)
or are they

2. compositional structures derived by the modes of syntactic (and
semantic) composition?

Key argument for Option 2: iteration

Possible ways of composition:

wrapping CORE

CORE CORE

NUC

CORE

CORE CORE

NUC

CLAUSE

CORE

CORE

NUC

CLAUSE

CORE

CORE CORE CORE

NUC NUC NUC

sister adjunction CORE*

CORE

NUC

CORE*

CORE

NUC

CLAUSE

CORE

CORE

NUC

CLAUSE

CORE

CORE CORE CORE

NUC NUC NUC

59 / 65

More on cosubordination structures

(12) Yu-slóhaŋ
by.pulling-slide

a-wíčha-∅-ye.
am-3pl.ug.anim-3sg.ac-go

[= (11)]

‘She was dragging them away.’

“licenced
adjunction”

“macrorole
unification”

$03&�
[
* = F′

$046#+

]

$03&
[* = F�]

/6$
[* = F�]

7
[* = F�]

\X�VOµKD

[$046#+]

$-"64&
[* = F]

$03&
[
* = F
$046#+

]

$03&
[* = F�]

130
[* = Z]

130
[* = Y]

/6$
[* = F�]

7
[* = F�]

D�XÍIB�»�\H

[$046#+]

[$046#−]

F� VXEDFWLYLW\�RI F
′

F�

H[WHQGHG�FDXVDWLRQ

"$503 Y ′

6/%&3(0&3 Z ′

130(‖. . . ‖

F� VXEDFWLYLW\�RI F

F�

DFFRPSDQLHG�PRWLRQ

"$503 Y

6/%&3(0&3 Z

130(‖. . . ‖

60 / 65

More on cosubordination structures

(13) Watashi
1sg

wa
top

taru
barrel

o
acc

korogashi-te
roll(caus)-te

chikashitsu
basement

ni
loc

ire-ta. (Japanese)
take.into-past

‘I rolled the barrel into the basement.’

CLAUSE

CORE

CORE CORE

RP RP NUC RP NUC

watashi wa taru o korogashi-te chikashitsu ni ire-ta

CORE

CORE CORE

RP RP NUC

korogashi-te

CLAUSE

CORE

CORE

RP NUC

ire-

61 / 65

More on cosubordination structures

(13) Watashi
1sg

wa
top

taru
barrel

o
acc

korogashi-te
roll(caus)-te

chikashitsu
basement

ni
loc

ire-ta. (Japanese)
take.into-past

‘I rolled the barrel into the basement.’
CLAUSE

CORE

CORE CORE

RP RP NUC RP NUC

watashi wa taru o korogashi-te chikashitsu ni ire-ta

CORE

CORE CORE

RP RP NUC

korogashi-te

CLAUSE

CORE

CORE

RP NUC

ire-

61 / 65

More on cosubordination structures

(13) Watashi
1sg

wa
top

taru
barrel

o
acc

korogashi-te
roll(caus)-te

chikashitsu
basement

ni
loc

ire-ta. (Japanese)
take.into-past

‘I rolled the barrel into the basement.’
CLAUSE

CORE

CORE CORE

RP RP NUC RP NUC

watashi wa taru o korogashi-te chikashitsu ni ire-ta

CORE

CORE CORE

RP RP NUC

korogashi-te

CLAUSE

CORE

CORE

RP NUC

ire-

61 / 65

Argument linking

base-transitive

[→ Kallmeyer/Lichte/Osswald/Petitjean 2016]

CLAUSE[I=e]

CORE[I=e]

RP[I=u] NUC[I=e] RP[I=v]

V[
I=e
PRED +

]

V[
I=e ′

PRED +

]

smash

e=e ′

e ′

causation

CAUSE
[

EFFECTOR x
]

EFFECT

RESULT

[
smashed-state
PATIENT y

]

62 / 65

Argument linking

base-transitive

[→ Kallmeyer/Lichte/Osswald/Petitjean 2016]

CLAUSE[I=e]

CORE[I=e]

RP[I=u] NUC[I=e] RP[I=v]

V[
I=e
PRED +

]

V[
I=e ′

PRED +

]

smash

e=e ′

u= x
v= y !

e ′

causation

CAUSE
[

EFFECTOR x
]

EFFECT

RESULT

[
smashed-state
PATIENT y

]

62 / 65

Argument linking

base-transitive [→ Kallmeyer/Lichte/Osswald/Petitjean 2016]

CLAUSE[I=e]

CORE[I=e]

RP[I=u] NUC[I=e] RP[I=v]

V[
I=e
PRED +

]

V[
I=e ′

PRED +

]

smash

e=e ′

u= x
v= y !

e ′

causation

CAUSE
[

EFFECTOR x
]

EFFECT

RESULT

[
smashed-state
PATIENT y

]

62 / 65

Constructional schemas

Example Adjectival resultative construction in English

(kick open, push shut, wipe clean, ...)

CLAUSE[I=e]

CORE[I=e]

NUC[I=e]

NUC[I=e ′] NUC[I=s]

RP[I=x] RP[I=y]V[
I=e ′

PRED+

] ADJ[
I= s
PRED+

]

e

causation

CAUSE e ′
[

EFFECTOR x
]

EFFECT

RESULT s

[
state
PATIENT y

]

ACTOR x
UNDERGOER y

63 / 65

Constructional schemas

Example Adjectival resultative construction in English
CLAUSE[I=e]

CORE[I=e]

NUC[I=e]

NUC[I=e ′] NUC[I=s]

RP[I=x] RP[I=y]V[
I=e ′

PRED+

] ADJ[
I= s
PRED+

]

e

causation

CAUSE e ′
[

EFFECTOR x
]

EFFECT

RESULT s

[
state
PATIENT y

]

ACTOR x
UNDERGOER y

NUC[I=e]

V[
I=e ′

PRED+

] ADJ[
I=s
PRED+

]≺∗

e

causation
CAUSE e ′

EFFECT

[
RESULT s

[
state

]]

A

(state → PATIENT : ⊤)

A

(CAUSE EFFECTOR : ⊤ → CAUSE EFFECTOR
.
= ACTOR)

A

(EFFECT RESULT PATIENT : ⊤ → EFFECT RESULT PATIENT
.
= UNDERGOER)

CORE[I=e]

RP[I=x] [PRED +] RP[I=y] [PRED +]≺ ≺ ≺

e

[
ACTOR x
UNDERGOER y

]

NUC

NUC NUC

CLAUSE[I=e]

CORE[I=e]

CORE[I=e]

NUC[I=e]

NUC[I=e]

[
I=e
PRED+

]

64 / 65

References

Bangalore, Srinivas & Aravind K. Joshi. 2010. Introduction. In Srinivas Bangalore & Aravind K. Joshi (eds.), Supertagging: Using complex
lexical descriptions in natural language processing, 1–31. Cambridge, MA: MIT Press.

Chen-Main, Joan & Aravind Joshi. 2012. A dependency perspective on the adequacy of tree local multi-component tree adjoining
grammar. Journal of Logic and Computation Advance Access .

Kallmeyer, Laura. 2016. On the mild context-sensitivity of k-Tree Wrapping Grammar. In Annie Foret, Glyn Morrill, Reinhard
Muskens, Rainer Osswald & Sylvain Pogodalla (eds.), Formal grammar. 20th and 21st international conferences, fg 2015, barcelona,
spain, august 2015, revised selected papers. fg 2016, bozen, italy, august 2016, proceedings, vol. 9804 Lecture Notes in Computer
Science, 77–93. Springer.

Kallmeyer, Laura & Aravind K. Joshi. 2003. Factoring Predicate Argument and Scope Semantics: Underspecified Semantics with LTAG.
Research on Language and Computation 1(1–2). 3–58.

Kallmeyer, Laura, Timm Lichte, Rainer Osswald & Simon Petitjean. 2016. Argument linking in LTAG: A constraint-based
implementation with XMG. In Proceedings of the 12th International Workshop on Tree Adjoining Grammars and related formalisms
(TAG+12), 48–57.

Kallmeyer, Laura & Rainer Osswald. 2013. Syntax-driven semantic frame composition in Lexicalized Tree Adjoining Grammars. Journal
of Language Modelling 1(2). 267–330.

Kallmeyer, Laura & Rainer Osswald. 2017. Combining predicate-argument structure and operator projection: Clause structure in Role
and Reference Grammar. In Proceedings of the 13th International Workshop on Tree Adjoining Grammars and related formalisms
(TAG+13), 61–70.

Kallmeyer, Laura, Rainer Osswald & Robert D. Van Valin, Jr. 2013. Tree wrapping for Role and Reference Grammar. In Glyn Morrill &
Mark-Jan Nederhof (eds.), Formal grammar (FG 2012/2013) (Lecture Notes in Computer Science 8036), 175–190. Springer.

Lichte, Timm & Simon Petitjean. 2015. Implementing semantic frames as typed feature structures with XMG. Journal of Language
Modelling 3(1). 185–228.

Osswald, Rainer & Laura Kallmeyer. to appear. Towards a formalization of Role and Reference Grammar. In Rolf Kailuweit, Eva
Staudinger & Lisann Künkel (eds.), Applying and expanding Role and Reference Grammar, Freiburg University Press.

Van Valin, Robert D., Jr. 2005. Exploring the syntax-semantics interface. Cambridge University Press.
Vijay-Shanker, K. & Aravind K. Joshi. 1988. Feature structures based tree adjoining grammar. In Proceedings of coling, 714–719.

Budapest.

65 / 65

