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Background

ParTAGe
I Developed as a part of my PhD thesis at the University of

Tours (advisors: Agata Savary and Yannick Parmentier)

I Why? TAGs are convenient for modeling MWEs and their
idiosycracies

I Designed as a PhD thesis playground rather than an
industrial-strength parser

3 / 30



ParTAGe
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A? Parsing

Why A? parsing for TAGs?
I Parsing time complexity: polynomial in the sentence length and

linear in the grammar size (O(n6 ∗ |G |)) [Gardent et al., 2014]
I Too costly for practical NLP applications

I A? parsing: speed up via reduction of the parsing search space
I The first derivation found is the most probable one

I LTAGs: O(n6)→ O(n2), under favorable circumstances

6 / 30



Motivating work

A? CCG parsing [Lewis and Steedman, 2014]

I The weight of a derivation = the sum of the weights of the
participating CCG categories

I Weights estimated on a per-sentence basis
I The result quick and accurate (on par with SOA CCG parsers)

Can we apply this idea to TAGs?
I MWEs represented in TAG as multi-anchored elementary trees

[Abeillé and Schabes, 1989]

I [Lewis and Steedman, 2014]: no support for multi-anchored units
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Handling MWEs in A? TAG parsing [Waszczuk et al., 2016b]

Statistical characterization
Weight of a derivation is a sum of the weights of the participating
elementary trees (ETs)

Figure: The weight of the MWE-based derivation = 5.
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Weight of a compositional analysis

Figure: The weight of the compositional derivation = 7, it is thus less
probable than the MWE-based derivation.
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Weighted inference rules
AX: 0 : (N→•α,(i,i))

i∈{0,...,n−1}
N→α is a rule

SC: w : (N→α•Mβ,(i,j,k,l))
w : (N→αM•β,(i,j,k,l+1)) `(M)=sl+1

DE: w : (N→α•,(i,j,k,l))
w+wN·[root(N)] : (N,(i,j,k,l))

wN is the weight of
the corresponding ET

PS: w1 : (N→α•Mβ,(i,j,k,l)) w2 : (M,(l,j′,k′,l′))
w1+w2 : (N→αM•β,(i,j⊕j′,k⊕k′,l′))

SU: w1 : (N→α•Mβ,(i,j,k,l)) w2 : (R,(l,l′))
w1+w2 : (N→αM•β,(i,j,k,l′))

¬foot(M) ∧ `(M)=`(R)
root(R)

FA: w1 : (N→α•Fβ,(i,l)) w2 : (M,(l,j′,k′,l′))
w1 : (N→αF•β,(i,l,l′,l′))

foot(F ) ∧ `(M)=`(F )
root(M) =⇒ (j′,k′)=(−,−)

RA: w1 : (R,(i,j,k,l)) w2 : (M,(j,j′,k′,k))
w1+w2 : (M,(i,j′,k′,l))

root(R) ∧ `(R)=`(M)
root(M) =⇒ (j′,k′)=(−,−)

Table: Weighted inference rules of an Earley-style, bottom-up TAG parser
[Alonso et al., 1999] (N, M, R, F are ET nodes, `(N) is the (non-)terminal with
which N is decorated, and α, β are sequences of nodes)
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A? TAG parsing

A? heuristic
A? parsing algorithm requires a heuristic – a lower-bound estimate
on the cost of parsing the remaining part of the sentence

Figure: A hypothetical parsing configuration considered by the parser:
prime minister analyzed as a MWE, the cost of parsing the remaing part of
the sentence to be determined.
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MWE-driven heuristic
Projecting weights on words

I Weights of ETs are projected on words
I Weight of a derivation = sum of the weights projected on words
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MWE-driven heuristic
Projecting weights on words
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MWE-driven heuristic

Hypotheses
The lowest possible weight will be projected over each of the
remaining words.

Figure: The parser recognized prime minister as a MWE. It still needs to
parse the remaning words: the and made a few good decisions.
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MWE-driven heuristic

Accounting for the tree t being matched
The heuristic accounts fot the weight of t, and ignores the terminals
outside the current span and still required to fully match t.
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MWE-driven heuristic

Dead-end detection for the tree t being matched
The heuristic returns ∞ when the terminals still required to fully
match t are not present in the remaining part of the sentence.
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MWE-driven heuristic
Properties
Admissible but not monotonic (due to gap-related predictions)

I Seems to be correct anyway [Nederhof, 2003]

Monotonic version
Trace via inference rules the weights projected over the gap

Figure: Graphical representation of the FA rule
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Motivating work

Promoting collocations [Wehrli et al., 2010]

I Promoting strong collocations (in particular, MWEs): an
effective way of dealing with syntactic ambiguity

How to obtain such behavior in A? TAG parsing?
I Assign the weight 1 to each ET in the grammar
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Experimental Evaluation [Waszczuk et al., 2016b]

Evaluation protocol
I Dataset: the Składnica treebank [Świdziński and Woliński, 2010]

annotated with MWEs [Savary and Waszczuk, 2017]

I Grammar: MWE-aware, extracted from Składnica
I Preprocessing: lexical selection + compression
I Evaluation: run the A? parser and measure the

search-space-size reductions stemming from promoting MWEs

Results
I Virtually 100% correct syntactic analysis (w.r.t baseline)
I Around 95% correct MWE identification
I Search-space reductions of 18.1% on average and up to 90.6%
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Grammar compression

Dual grammar representation [Waszczuk et al., 2016a]

Figure: (a) subtree sharing [Schabes and C. Waters, 1995] (b) FSA-based
representation of dotted rules [Nederhof, 1998]

Consequences for parsing

+ Chart items get conflated =⇒ computation gets smaller
+ Can be applied to symbolic parsing (no weights)
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Combining grammar compression with A*

Challenges
I Under compression, a chart item can correspond to traversals

of many different ETs
I The values of the heuristic can still be computed in O(1) time1

I Applying inference rules in O(1) not yet achieved in the current
implementation

1At least as long as no dead-end detection is performed
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Parsing with feature structures in ParTAGe
Principles

+ Unification (i) explicitely handled in the inference rules and (ii)
performed on-the-fly (rather than in post-processing [Parmentier
et al., 2008, Koller, 2017])

+ Should allow for better integration with A?

+ Support for generic unification-like computations over
derivation trees (optional top/bottom FS distinction, flat or
nested FSs, adjunction constraints, etc.)

+ Composes smoothly with compression (subtree sharing and
prefix-tree representation of dotted rules)

− Not integrated with A? yet

Implementation
I A version which supports XMG-generated TAGs with flat FSs is

available at https://github.com/kawu/partage4xmg
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Parsing with feature structures in ParTAGe

Example

Figure: A graphical representation of a bottom-up unification computation
given an ET decorated with FSs and unification variables (on the left) and
a tree of FSs originating from adjunctions and substitutions (on the right).
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Parsing with feature structures in ParTAGe

Disadvantages

− Unification performed on entire ETs, rather than at the
moment of substitution/adjunction

− Trees over FSs are stored in chart items (complexity issue)
− No sharing of common FS parts
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Future work

I Repeat the experimental evaluation of promoting MWEs with a
truly weighted grammar

I Relax the assumption of the independence between ETs [Resnik,
1992, Yoshikawa et al., 2017]

I Find the right balance between A?, compression, and FSs
⇒ develop the corresponding unified implementation
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Thank you!
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