
Discontinuous treebank annotation
using LCFRS

Andreas van Cranenburgh

Heinrich Heine Universität Düsseldorf

February 21, 2018

TreeGrasp meeting #1, Düsseldorf



Annotating. 2 down, 40,000 to go . . .



Annotating. 2 down, 40,000 to go . . .



Goals

I Minimize total cost of annotation
I What is the effect of immediate grammar re-training?

I Annotate literary texts
I Explore other annotation tasks / schemes (RRG?)



Discontinuity with LCFRS
ROOT

SBARQ

SQ

VP

WHADVP

WRB
Why

VB
cross

NP

DT
the

NN
road

VBD
did

NP

DT
the

NN
chicken

.
?

Linear Context-Free Rewriting System (LCFRS)
VP2(a,bc)→WHADVP(a) VB(b) NP(c)

Capture constituency + predicate-argument structure



Discontinuity with LCFRS
ROOT

SBARQ

SQ

VP

WHADVP

WRB
Why

VB
cross

NP

DT
the

NN
road

VBD
did

NP

DT
the

NN
chicken

.
?

Linear Context-Free Rewriting System (LCFRS)
VP2(a,bc)→WHADVP(a) VB(b) NP(c)

Capture constituency + predicate-argument structure



Double-DOP: exploiting common tree fragments

S

VP

NP

NPJJ,NN

NN

dog

JJ

hungry

DT

the

VBP

saw

NP

NN

cat

DT

The

S

VP

NP

NN

dog

DT

the

VBP

saw

NP

NN

cat

DT

The

Capture arbitrary word/constituent co-occurrences.

I Extract fragments that occur
at least twice in treebank

I For every pair of trees,
extract maximal overlapping fragments

I Fragments can be used as Tree-Substitution Grammar

Sangati & Zuidema (2011). Accurate parsing w/compact TSGs: Double-DOP



Double-DOP: exploiting common tree fragments

S

VP

NP

NPJJ,NN

NN

dog

JJ

hungry

DT

the

VBP

saw

NP

NN

cat

DT

The

S

VP

NP

NN

dog

DT

the

VBP

saw

NP

NN

cat

DT

The

Capture arbitrary word/constituent co-occurrences.
I Extract fragments that occur

at least twice in treebank
I For every pair of trees,

extract maximal overlapping fragments
I Fragments can be used as Tree-Substitution Grammar

Sangati & Zuidema (2011). Accurate parsing w/compact TSGs: Double-DOP



Improving parsers with data

Raw text is cheap,
annotation is costly
Unsupervised / semi-supervised: word co-occurrences

provide some distributional syntactic
information, but limited.

Supervised: Very labor intensive, requires very special set
of skills, costly, boring, tedious, etc.

Active Learning: Reduce work load without
compromising on annotation quality / detail
⇒ this talk



Actual treebank annotation practice

Manual correction of automatic parses in GUI
PTB: Deterministic parser (Marcus et al 1993, §4.1).

Produces only 1 analysis, only provides
bracketings it is confident about.

Tiger: Brants et al (2004, §3)
I Interactive annotation with Cascaded

Markov Model; advantage: responds to
user feedback.

I LFG parser, non-interactive
post-editing/disambiguation; advantage:
always syntactically consistent.



Efficient annotation

Interactivity :
Semi-automatic annotation: parser suggests

candidates
Interactive disambiguation: help annotator

identify correct analysis
Active Learning :

Prioritization: Annotate sentences in order that
minimizes required user interaction
⇒ learning converges faster

Incremental parser training: further automatic
parses immediately improve from
annotation feedback



Active Learning

1. Select data point that model expects to yield the
most improvement. (Training Utility Value)

2. Expert annotates data point.
3. Re-train the model.
4. Repeat.

i.e., machine teaching instead of machine learning
(http://prodi.gy)

Provides substantial annotation speedup:
e.g., 80 % reduction in annotation time
(Baldridge & Osborne, EMNLP 2004)

Settles (2010), Active learning literature survey.
http://burrsettles.com/pub/settles.activelearning.pdf

http://prodi.gy
http://burrsettles.com/pub/settles.activelearning.pdf


Ranking sentences I: entropy

Intuition
Disambiguation is hard when a sentence has many
analyses with similar probabilities,
⇒ entropy as Training Utility Value (TUV);
Maximizes information gain

1. Collect n-best parse trees
with probabilities pi for a sentence

2. Take entropy of probability distribution p1 . . .pn:
−
∑

i pi logpi

3. Normalize by number of parse trees n:
TUV(sent) = 1

log n · −
∑

i pi logpi

Hwa (CL journal, 2004) Sample Selection for Statistical Parsing.



Ranking sentences II: clustering

Cluster syntactically similar sentences

I Similarity metric: common tree fragments
I Clustering method: K-Means, with k s.t. clusters consist

of about 10 sentences

Combine with entropy ranking by first clustering,
then ordering the clusters by mean entropy.

I Cluster 1: Once upon a time . . . etc.
I Cluster 2: . . . lived happily ever after. etc.
I etc.

Tang et al (ACL 2002), Active Learning for Stat. Nat. Lang. Parsing



Selecting from n-best list: decision tree

Reduce n-best list to a decision tree
of ‘discriminants’

I Entropy-based decision tree
I Features: presence of bracketings
I Leaves: n-best trees
I Use probabilities: lower prob. ⇒ longer path
I Pruning: discard trees with p < 1/n

NP 0:1 NP 0:2 VP 1:2 . . .
Tree 1 1 0 0 . . .
Tree 2 1 1 0 . . .
Tree 3 0 1 1 . . .

NP-0:2?

NP-0:1?

tree-2tree-3

tree-1

Osborne & Baldridge (EMNLP 2004),
Ensemble-based Active Learning for Parse Selection



Selecting from n-best list: decision tree

Reduce n-best list to a decision tree
of ‘discriminants’

I Entropy-based decision tree
I Features: presence of bracketings
I Leaves: n-best trees
I Use probabilities: lower prob. ⇒ longer path
I Pruning: discard trees with p < 1/n

NP 0:1 NP 0:2 VP 1:2 . . .
Tree 1 1 0 0 . . .
Tree 2 1 1 0 . . .
Tree 3 0 1 1 . . .

NP-0:2?

NP-0:1?

tree-2tree-3

tree-1

Osborne & Baldridge (EMNLP 2004),
Ensemble-based Active Learning for Parse Selection



User interface

I parser obtains n-best trees
I user walks through decision tree

or: edit tree manually
I user accepts tree;

grammar is augmented with fragments of this tree
before parsing next sentence



Why DOP

S

NP VP

VB NP
loves

NP
Daisy

NP
Gatsby

S

NP VP

VB NP
Daisy loves Gatsby

I Memory-based, “training” is conceptually simple &
cheap:
new tree⇒ extract fragments⇒ update grammar

I Incremental model fitting more
challenging/expensive with other methods:

I Split-merge grammars (EM),
I Bayesian grammars (Gibbs sampling),
I Deep Learning (SGD).

Bod (1992); Sangati & Zuidema (EMNLP 2011): 2DOP



Augmenting the grammar

Given a new tree T and the current grammar G, a multiset
of tree fragments.

I extract recurring fragments among initial training set
and new tree

I new fragment compile into new, unique rules
existing fragment increment relative frequency of

existing rules
I bookkeeping: re-normalize grammar, re-sort indexes

of rules, etc.
Typically takes < 1 second to add 1 parse tree to the
grammar.

van Cranenburgh (2014): [tree] fragments [in] linear avg. time



Robustness

How to avoid dreaded “no parse”?

I Ideally, a statistical parser finds a parse tree
for any input

I However, when grammar contains discontinuous
constituents, function tags, not all productions may
be available.

Workaround: extract partial parses from incomplete chart
w/recursive algorithm:
1. Extract largest, most probable subtree from chart
2. Repeat for rest of sentence

Results become siblings under ROOT label.



Pilot experiment

I initial grammar: DOP grammar of FTB
(13k sentences Le Monde newspaper)

F1 POS %
2DOP, Sangati & van Cra. (2015) 79.3 96.3
Stanford parser, Green et al (2013) 79.0

I new data: first 2 chapters of Madame Bovary
(Flaubert 1856, 215 sentences).
Annotated by yours truly.

I 50% split of new trees:
extra train trees, test set



Evaluation
Model, train set Test set F1 EX
2DOP, FTB FTB 79.3 19.9
2DOP, FTB Bovary 77.7 22.9
2DOP, FTB + 100 Bovary trees Bovary 78.9 23.8

0 25 50 75 100
77.6

78

78.4

78.8

F1

0 25 50 75 100

extra training sentences

22.8

23.2

23.6

24

E
X

I out-of-domain effect is small: 7 % rel. error increase
I 5 % relative error reduction from just 100 new trees



Observations about annotation / UI

I Decision tree useful to guide attention,
but for obvious mistakes, editing is faster.

I Long sentences don’t fit on screen . . .
I Partial parses not very good.
I Inconsistent parses, e.g. multiple subjects.



Sketch of larger experiment

I Grimm’s fairy tales (how many sentences?)
I Multiple annotators (how many?)
I Measure:

I effect of order of annotation:
original, random, ranked

I Track time/mouse clicks per sentence



Conclusion

Yes, we can . . .

Make Annotation Great Again!

I Encouraging results:
I Literary, out-of-domain text parsed relatively well
I Small number of annotations already improve

accuracy
I More comprehensive experiments needed to see to

what extent incremental learning really helps
Code will be made available at
http://github.com/andreasvc/disco-dop

http://github.com/andreasvc/disco-dop


Conclusion

Yes, we can . . .
Make Annotation Great Again!

I Encouraging results:
I Literary, out-of-domain text parsed relatively well
I Small number of annotations already improve

accuracy
I More comprehensive experiments needed to see to

what extent incremental learning really helps
Code will be made available at
http://github.com/andreasvc/disco-dop

http://github.com/andreasvc/disco-dop


Possible improvements

General:
I Gamification: encourage inter-annotator agreement
I Optimize workflow; keyboard-based UI

Ideas from previous work:
I Osborne & Baldridge (EMNLP 2004):

I Use diverse ensemble of parsers
I Baldridge & Palmer (EMNLP 2009):

I Model annotator expertise/fallibility
I Model cost of annotation given sentence

I Mirroshandel & Nasr (IWPT 2011):
I Rank per-token uncertainty instead of by sentence



Wild ideas

I Bootstrap a new treebank when no initial grammar is
available? (endangered / low-resource languages)

I Add new levels of annotation to an existing treebank?
e.g.,

I multi-word expressions
I semantic frames etc.

I Joint annotation of constituency and dependency
structures?

I Grammar engineering instead of treebank
annotation; e.g., LTAG, RRG


